Program Overview: Update on Program Progress James R. Brodrick, Ph.D. US Department of Energy Office of Energy Efficiency and Renewable Energy Buildings Technologies Program #### **Table of Contents** - 1 Mission of Efficiency - 2 Budget and Investment - 3 Program Progress and Management #### Mission Statement #### **Solid-State Lighting Program Mission** Guided by a government-industry partnership, the mission is to create a new market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy and enhance the quality of the lighted environment. #### White-Light LED Efficacy Targets #### White-Light OLED Efficacy Targets # The Legislative Authority Domenici-Barton Energy Policy Act 2005 Section 912 "The Secretary shall carry out a Next Generation Lighting Initiative in accordance with this section to support research, development, demonstration, and commercial application activities related to advanced solid-state lighting technologies based on white light emitting diodes." #### Next Generation Lighting Initiative Key Points - Authorizes \$50 million for FY2007 through FY 2013 - Competitively select Industry Alliance - Award competitive R&D projects - Directs for intellectual property guidance an Exceptional Circumstance Determination - Make roadmaps and general information available to public - www.netl.doe.gov/ssl #### **Table of Contents** - 1 Mission of Efficiency - 2 Budget and Investment - 3 Program Progress and Management ## Congressional Appropriation (\$ million) ^{*} Congressional Directive #### SSL R&D Project Funding Total Contract Value of Projects: \$51.7 million* (35 projects) - OLED: \$24.8 million (14 projects) - LED: \$26.9 million (21 projects) ^{*} The total contract value includes DOE funding (\$39.6 million) and applicant cost-share (\$12.2 million) #### Recipients of DOE Funding • The Department funds solid-state lighting research in partnership with industry, universities, and national labs. ## Total Portfolio: Core Technology | | Total # of Projects | \$ Funding (million) | |---|---------------------|----------------------| | Light Emitting Diode | | | | High-efficiency semiconductor materials | 8 | \$10.1 | | Device approaches, structures and systems | 4 | \$3.1 | | Phosphors and conversion materials | 5 | \$5.5 | | Organic Light Emitting Diode | | | | High-efficiency, low-voltage stable materials | 8 | \$9.7 | | Low-cost encapsulation and packaging | 3 | \$5.5 | | Research on low-cost transparent electrodes | 1 | \$0.8 | | Total | 29 | \$34.7 | # Total Portfolio: Product Development | | Total # of
Projects | \$ Funding (million) | |---|------------------------|----------------------| | Light Emitting Diode | | | | Manufactured Materials | 0 | \$0.0 | | Optical Coupling and Modeling | 4 | \$8.2 | | Organic Light Emitting Diode | | | | Between electrodes high-efficiency, low-voltage stable materials | 1 | \$4.1 | | Develop architectures that improve device robustness, increase lifetime and increase efficiency | 1 | \$4.8 | | Total | 6 | \$17.1 | #### Compound Semiconductor Materials Systems Of the 21 LED projects, 17 involve research with Gallium Nitride (GaN) materials systems, and 4 involve work with other material systems. #### Methods for Creating White Light Of the 21 LED projects, 4 are studying multi-color systems, 11 are researching pcLED systems, and 6 are studying technologies that could apply to either method of creating white light. #### **OLED Material Systems** Of the 14 OLED projects, 12 projects are researching small molecule OLEDs, one is researching polymer OLEDs and one could apply to either OLED material system. #### **Table of Contents** - 1 Mission of Efficiency - 2 Budget and Investment - 3 Program Progress and Management # Cree Lighting Project Meets DOE FY05 Joule Target - White LED device efficacy of 65 LPW - Novel chip design balanced with multiple interrelated design parameters - Pre-production prototype uses standard XLamp[™] package #### OSRAM Demonstrates OLED Success - Polymer-based white OLED - Achieves record efficiency of 25 LPW - Combines orange inorganic phosphor with record-setting blue-light device ## University of California at Santa Barbara Advances LED Chip Design - Altered chip geometry to increase light output - Achieved photonic crystal effects in GaN - Demonstrated micro-cavity LEDs in InGaN # Lumileds, University of New Mexico, Sandia National Laboratories Demonstrate Largest-Area Photonic Crystal LED - Large-area devices key to: - Assisting in verifying extraction efficiency gains - Enabling systematic optimization of parameters - Allowing exposure of edge effects - Important step toward low-cost, high-volume manufacturing of photonic crystal LEDs # Rensselaer Develops Silicone-based LED Encapsulant - Has functional properties of traditional encapsulants - Resists yellowing up to 140°C in UV light - Traditional encapsulant epoxies yellow due to oxidation or exposure to UV light - Licensed by Rohm and Haas, who will support further research, market introduction ## DOE Solid-State Lighting 5 Thrust – Total Program Guiding technology advances from laboratory to marketplace #### Stage Gate R&D Management | | Basic Science
Research
1 | Applied
Research
2 | Exploratory
Development
3 | Advanced
Development
4 | Engineering
Development
5 | Product
Demonstration
6 | Commercialize
and Sales
7 | | |--|---|---|---|--|---|--|---------------------------------|--| | Technical
Activities | Knowledge
Base
Expansion | Idea
Generation | Proof of
Technology-
Product
Definition | Proof of
Technology-
Working
Model | Engineering
Prototype | Production
Prototype | Utilization by
End User | | | Gate
Expectations | 1 2 3 4 5 6 New Concept Proven Performance Over existing Market demand Criteria Production ready | | | | | | | | | Deliverables
Required for
Gate Decisions | Paper or
journal article
Document
proof of
concept | Empirical
performance
evidence
Building end-
use energy | Compare to
baseline
Preliminary
market
assessment | Specifications Detailed market assessment Issues and benefits | Partnership
agreements
Field tested
Cost/benefit
analysis | Final product
specification
National
energy
savings
potential | | | ^{*} SSL projects move through a stage-gate process, see "Winning at New Products", Robert Cooper, 2001.